Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Food Chem ; 448: 139162, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579557

RESUMO

Carbon nitride nanoflower materials (CNNFs) modified electrodes were prepared and used as electrochemiluminescence (ECL) sensors for the sensitive detection of melatonin (MT) in food. The luminescence intensity of CNNFs is increased by 4.6 times compared with bulk g-C3N4. In addition, the effect of dissolved oxygen on the material was eliminated, and the stability of ECL intensity of CNNFs was improved. Under the optimal experimental conditions, there is a good linear relationship between the ECL intensity ratio and logCMT in a concentration range of 2.0 × 10-11-1.0 × 10-6 mol/L, and the detection limit is 6.2 × 10-13 mol/L. This experiment has been successfully used for the detection of MT in rice, black rice, oats, apples, bananas, grapes, carrots, tomatoes, cucumbers, bread, and beers. The results are consistent with those obtained by high-performance liquid chromatography (HPLC). Therefore, this sensor is a sensitive and effective method for detecting MT content in food.

2.
eNeuro ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658137

RESUMO

The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of layer 5 parvalbumin-expressing (PV+) cells in the M1 of mice of both sexes. Here we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of layer 5 PV+ cells in M1. Moreover, we demonstrated that the number of perisomatic PV+ puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV+ cells following the loss of midbrain dopaminergic neurons.Significance statement The pyramidal neurons in the motor cortex manifests highly synchronized bursting pattern of activity in parkinsonian state, but the underlying circuit mechanisms are poorly understood. One can easily consider PV interneurons-mediated inhibitory network as a potential microcircuitry mechanism. However, whether loss of DA affects cortical PV+ network remains unknown. The present work documented that loss of DA in parkinsonian state does not alter the number, morphology, cellular excitability, and synaptic physiology of PV+ cells in M1. An intact robust PV+ perisomatic inhibition of pyramidal neurons provides a microcircuit substrate for thalamic afferents to entrain cortical neurons to pathological oscillations throughout the cortico-basal ganglia-thalamocortical network in parkinsonian state.

3.
RSC Adv ; 14(14): 9848-9859, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528932

RESUMO

Jaw defects, which can result from a multitude of causes, significantly affect the physical well-being and psychological health of patients. The repair of these infected defects presents a formidable challenge in the clinical and research fields, owing to their intricate and diverse nature. This study aims to develop a personalized bone tissue engineering scaffold that synergistically offers antibacterial and osteogenic properties for treating infected maxillary defects. This study engineered a novel temperature-sensitive, sustained-release hydrogel by amalgamating ß-cyclodextrin (ß-CD) with chlorhexidine (CHX) and a decellularized extracellular matrix (dECM). This hydrogel was further integrated with a polylactic acid (PLA)-nano hydroxyapatite (nHA) scaffold, fabricated through 3D printing, to form a multifaceted composite scaffold (nHA/PLA/dECM/ß-CD-CHX). Drug release assays revealed that this composite scaffold ensures prolonged and sustained release. Bacteriological studies confirmed that the ß-CD-CHX loaded scaffold exhibits persistent antibacterial efficacy, thus effectively inhibiting bacterial growth. Moreover, the scaffold demonstrated robust mechanical strength. Cellular assays validated its superior biocompatibility, attributed to dECM and nHA components, significantly enhancing the proliferation, adhesion, and osteogenic differentiation of osteogenic precursor cells (MC3T3-E1). Consequently, the nHA/PLA/dECM/ß-CD-CHX composite scaffold, synthesized via 3D printing technology, shows promise in inducing bone regeneration, preventing infection, and facilitating the repair of jaw defects, positioning itself as a potential breakthrough in bone tissue engineering.

4.
Front Bioeng Biotechnol ; 12: 1350227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456007

RESUMO

Fibula transplantation plays an irreplaceable role in restoring the function and morphology of the defected mandible. However, the complex load-bearing environment of the mandible makes it urgent to accurately reconstruct the mandible, ensure the position of the condyle after surgery, and restore the patient's occlusal function and contour. The intervention of digital design and three-dimensional (3D) printed titanium mesh provides a more efficient method and idea to solve this problem. Digital design guides the accurate positioning, osteotomy, and simultaneous implant placement during surgery, and 3D printed titanium mesh ensures stable condyle position after surgery, restoring good mandibular function. The double-layer folded fibula maintains the vertical height of the mandible and a good facial contour, and simultaneous implant placement can establish a good occlusal relationship. This study conducted a retrospective analysis of five patients with jaw defects who underwent digital fibula reconstruction over the past 3 years. It was found that the surgical protocol combining digital design, 3D printed intraoperative guides, 3D printed titanium mesh, free fibula flap, immediate implant, and occlusal reconstruction to repair jaw defects had more ideal facial appearance and biological function. It will provide a more reliable surgical protocol for clinical management of large mandibular defects.

5.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474217

RESUMO

Nitrogen is a crucial element that impacts rice yields, and effective tillering is a significant agronomic characteristic that can influence rice yields. The way that reduced nitrogen affects effective tillering is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, 469 germplasm varieties were used for a genome-wide association analysis aiming to detect quantitative trait loci (QTL) associated with effective tillering at low (60 kg/hm2) and high (180 kg/hm2) nitrogen levels. QTLs detected over multiple years or under different treatments were scrutinized in this study, and candidate genes were identified through haplotype analysis and spatio-temporal expression patterns. A total of seven genes (NAL1, OsCKX9, Os01g0690800, Os02g0550300, Os02g0550700, Os04g0615700, and Os04g06163000) were pinpointed in these QTL regions, and were considered the most likely candidate genes. These results provide favorable information for the use of auxiliary marker selection in controlling effective tillering in rice for improved yields.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Nitrogênio , Locos de Características Quantitativas
6.
Iran J Basic Med Sci ; 27(3): 343-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333748

RESUMO

Objectives: Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects. Materials and Methods: C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues. Results: Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all P<0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all P<0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). Conclusion: Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.

7.
Adv Sci (Weinh) ; 11(13): e2307030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279587

RESUMO

Allogeneic tumor cell vaccines provide off-the-shelf convenience but lack patient specificity due to heterogeneity in tumor antigens. Here, allogeneic tumor cell corpses are converted into "zombie cells" capable of assimilating heterogeneous tumor by seizing cancer cells and spreading adjuvant infection. This causes pseudo-oncolysis of tumors, transforming them into immunogenic targets for enhanced phagocytosis. It is shown that in postoperative tumor models, localized delivery of premade "zombie cells" through stepwise gelation in resection cavity consolidates tumor surgery. Compared to analogous vaccines lacking "seizing" or "assimilating" capability, "zombie cell" platform effectively mobilizes T cell response against residual tumors, and establishes immunological memory against tumor re-challenge, showing less susceptibility to immune evasion. Despite using allogeneic sources, "zombie cell" platform functions as generalizable framework to produce long-term antitumor immunity in different tumor models, showing comparable effect to autologous vaccine. Together, with the potential of off-the-shelf availability and personalized relevance to heterogenous tumor antigens, this study suggests an alternative strategy for timely therapy after tumor surgery.


Assuntos
Vacinas Anticâncer , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Antígenos de Neoplasias
8.
Sci Total Environ ; 915: 169809, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38184260

RESUMO

Biochar application in rice production reduces nitrogen loss and greenhouse gases. We conducted in situ experiments for 3 years, with N210B0 (210 kg N ha-1) as the control. Two biochar application methods (B1:15 t ha-1 biochar applied once and B2: biochar applied three times at 5 t ha-1 yr-1) combined with two nitrogen levels (N210: 210 kg N ha-1 and N168: 168 kg N ha-1) were used. Soil physicochemical properties, CH4 and N2O emissions, functional gene abundance, rice yield, and nitrogen use efficiency were analyzed. Both methods improved the physicochemical properties of the soil, however, B1 was less effective than B2 in increasing soil pH, bulk density, organic carbon, total nitrogen, and microbial biomass nitrogen in year 3. B1 had a higher CH4 emission mitigation effect than B2 in 3 consecutive years, mainly due to the higher pmoA gene abundance. B1 showed a higher reduction effect of N2O emissions compared to B2 in year 1, but the opposite was observed in years 2 and 3. B2 had a higher abundance of AOB, nirK, and nosZ genes compared to B1 in year 3. Compared with N210B0, rice yields were increased by 9.1 %, 9.6 %, and 3.6 % with N210B1, N210B2, and N168B2, respectively, over 3 years, while N168B1 improved yields in the previous 2 years. Biochar improved nitrogen use efficiency over 3 consecutive years directly due to increased use efficiency of panicle fertilizer; the effect of B1 was greater than that of B2 during years 1 and 2, while the opposite was observed in year 3. Both Biochar applied once and three times appeared to be promising practices to increase yield and mitigate GHGs. From the GHGI perspective, the biochar applied once combined with 168 kg N ha-1 can further improve nitrogen use efficiency, and reduce GHGs without hindering improvements in rice yield.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura/métodos , Nitrogênio , Óxido Nitroso/análise , Carvão Vegetal , Solo/química , Fertilizantes/análise , Metano/análise
9.
Sci Adv ; 10(3): eadj4196, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241377

RESUMO

Anxiety and depression are frequently observed in patients suffering from trigeminal neuralgia (TN), but neural circuits and mechanisms underlying this association are poorly understood. Here, we identified a dedicated neural circuit from the ventral hippocampus (vHPC) to the medial prefrontal cortex (mPFC) that mediates TN-related anxiodepression. We found that TN caused an increase in excitatory synaptic transmission from vHPCCaMK2A neurons to mPFC inhibitory neurons marked by the expression of corticotropin-releasing hormone (CRH). Activation of CRH+ neurons subsequently led to feed-forward inhibition of layer V pyramidal neurons in the mPFC via activation of the CRH receptor 1 (CRHR1). Inhibition of the vHPCCaMK2A-mPFCCRH circuit ameliorated TN-induced anxiodepression, whereas activating this pathway sufficiently produced anxiodepressive-like behaviors. Thus, our studies identified a neural pathway driving pain-related anxiodepression and a molecular target for treating pain-related psychiatric disorders.


Assuntos
Hormônio Liberador da Corticotropina , Neuralgia do Trigêmeo , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/metabolismo , Neurônios/metabolismo , Hipocampo/fisiologia , Dor/metabolismo
10.
Sci Total Environ ; 912: 169176, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086477

RESUMO

The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L-1). However, 10 mg L-1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10-100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SYNOPSIS: The concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.


Assuntos
Chlorella vulgaris , Scenedesmus , Poluentes Químicos da Água , Animais , Plâncton , Tensoativos/toxicidade , Polissorbatos/toxicidade , Daphnia , Poluentes Químicos da Água/toxicidade
11.
Ear Nose Throat J ; : 1455613231213477, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37997378

RESUMO

Venous malformations often manifest in early childhood and do not spontaneously resolve. Most vein malformations of the lips are typically treated at a young age, with giant arteriovenous malformations being particularly rare. Herein, we introduce the case of a 47-year-old man who presented to our department complaining of a progressive mass on his lower lip. Clinical examination revealed a mass measuring 10 cm × 8 cm × 4 cm in size, characterized by a soft texture and smooth edges. Despite a series of sclerotherapy interventions, the lesion remained unresponsive. Consequently, we performed a preoperative embolization of the malformed vessel using digital angiography, followed by extensive resection of the lesion and repair of the defect using an adjacent flap. The postoperative period was uneventful, and no local recurrence was observed during a 4-year follow-up period. Therefore, we recommend preoperative angioembolization as a valuable approach for addressing large lower lip deformities to enable extensive surgical resection and robust therapeutic outcomes.

12.
Molecules ; 28(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005376

RESUMO

SIRT2 is a member of NAD+-dependent sirtuins and its inhibition has been proposed as a promising therapeutic approach for treating human diseases, including neurodegenerative diseases, cancer, and infections. Expanding SIRT2 inhibitors based on the 3-aminobenzyloxy nicotinamide core structure, we have synthesized and evaluated constrained analogs and selected stereoisomers. Our structure-activity relationship (SAR) study has revealed that 2,3-constrained (S)-isomers possess enhanced in vitro enzymatic inhibitory activity against SIRT2 and retain excellent selectivity over SIRT1 and SIRT3, provided that a suitable ring A is used. This current study further explores SIRT2 inhibitors based on the 3-aminobenzyloxy nicotinamide scaffold and contributes to the discovery of potent, selective SIRT2 inhibitors that have been actively pursued for their potential therapeutic applications.


Assuntos
Sirtuína 2 , Sirtuína 3 , Humanos , Relação Estrutura-Atividade , Niacinamida/farmacologia , Niacinamida/química
13.
J Agric Food Chem ; 71(43): 16090-16101, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856847

RESUMO

Plumula Nelumbinis, the green embryo of a lotus seed, is widely consumed in China as a well-known food with medicinal effects. In this study, 14 alkaloids, including 4 new and 10 known alkaloids, were isolated from it, which were elucidated by comprehensive spectroscopic analysis, and were investigated for their antimelanogenic effects in vitro and in vivo. As a result, melanogenesis in α-MSH-stimulated B16F10 cells was reduced significantly by a new compound 4 and known compound 12 at a concentration of 0.5 µg/mL, and the tyrosinase (TYR) activities were inhibited by 78.7 and 82.0% at 4 µg/mL, prior to α-arbutin (41.3%). Additionally, compounds 4 and 12 also exhibited superior antimelanogenic effects compared to α-arbutin on a zebrafish assay model at equivalent concentrations. Mechanistically, our preliminary findings suggested that compounds 4 and 12 exerted antimelanogenesis effect probably by inhibiting key proteins involved in melanin production such as microphthalmia-associated transcription factor, TYR, TRP-1, and TRP-2. The findings highlight the potential use of Plumula Nelumbinis containing compounds 4 and 12 as functional foods for treating hyperpigmentation.


Assuntos
Alcaloides , Melanoma Experimental , Animais , Peixe-Zebra/metabolismo , Arbutina , Alcaloides/farmacologia , Isoquinolinas , Melaninas , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico
14.
Nat Commun ; 14(1): 5777, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723160

RESUMO

SARS-CoV-2 infection causes spike-dependent fusion of infected cells with ACE2 positive neighboring cells, generating multi-nuclear syncytia that are often associated with severe COVID. To better elucidate the mechanism of spike-induced syncytium formation, we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical stimulator for spike-induced cell-cell fusion. We show that HS binds spike and promotes spike-induced ACE2 clustering, forming synapse-like cell-cell contacts that facilitate fusion pore formation between ACE2-expresing and spike-transfected human cells. Chemical or genetic inhibition of HS mitigates ACE2 clustering, and thus, syncytium formation, whereas in a cell-free system comprising purified HS and lipid-anchored ACE2, HS stimulates ACE2 clustering directly in the presence of spike. Furthermore, HS-stimulated syncytium formation and receptor clustering require a conserved ACE2 linker distal from the spike-binding site. Importantly, the cell fusion-boosting function of HS can be targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice. Thus, HS, as a host factor exploited by SARS-CoV-2 to facilitate receptor clustering and a stimulator of infection-associated syncytium formation, may be a promising therapeutic target for severe COVID.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Drogas em Investigação , Células Gigantes , Heparitina Sulfato
15.
J Mater Chem B ; 11(41): 9867-9888, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751281

RESUMO

Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Hidrogéis/química , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos , Terapia Baseada em Transplante de Células e Tecidos
16.
J Control Release ; 363: 402-414, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751825

RESUMO

Post-surgical efferocytosis of tumor associated macrophages (TAMs) originates an immunosuppressive tumor microenvironment and facilitates abscopal metastasis of residual tumor cells. Currently, few strategies could inhibit efferocytosis while recovering the tumor-eliminative phagocytosis of TAMs. Herein, we developed an in situ hydrogel that contains anti-CD47 antibody (aCD47) and apocynin (APO), an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. This hydrogel amplifies the non-efferocytic phagocytosis of TAMs by (1) blocking the extracellular "Don't eat me" signal of efferocytosis with aCD47, which enhances the receptor-mediated recognition and engulfment of tumor cells by TAMs in the post-surgical tumor bed, and (2) by utilizing APO to dispose of tumor debris in a non-efferocytic manner, which prevents acidification and maturation of efferosomes and allows for M1-polarization of TAMs, leading to improved antigen presentation ability. With the complementary intervention of extracellular and intracellular, this hydrogel reverses the immunosuppressive effects of efferocytosis, and induces a potent M1-associated Th1 immune response against tumor recurrence. In addition, the in situ detachment and distal colonization of metastatic tumor cells were efficiently restrained due to the intervention of efferocytosis. Collectively, the hydrogel potentiates surgery treatment of tumor by recovering the tumor-elimination ability of post-surgical TAMs.


Assuntos
Macrófagos , Neoplasias , Humanos , Hidrogéis/farmacologia , Fagocitose , Neoplasias/patologia , Microambiente Tumoral
17.
Sci Adv ; 9(34): eadg3038, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611096

RESUMO

Degeneration of midbrain dopaminergic (DA) neurons alters the connectivity and functionality of the basal ganglia-thalamocortical circuits in Parkinson's disease (PD). Particularly, the aberrant outputs of the primary motor cortex (M1) contribute to parkinsonian motor deficits. However, cortical adaptations at cellular and synaptic levels in parkinsonism remain poorly understood. Using multidisciplinary approaches, we found that DA degeneration induces cell subtype- and input-specific reduction of thalamic excitation to M1 pyramidal tract (PT) neurons. At molecular level, we identified that N-methyl-d-aspartate (NMDA) receptors play a key role in mediating the reduced thalamocortical excitation to PT neurons. At circuit level, we showed that the reduced thalamocortical transmission in parkinsonian mice can be rescued by chemogenetically suppressing basal ganglia outputs. Together, our data suggest that cell subtype- and synapse-specific adaptations in M1 contribute to altered cortical outputs in parkinsonism and are important aspects of PD pathophysiology.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Camundongos , Tratos Piramidais , Neurônios Motores , Gânglios da Base , Receptores de N-Metil-D-Aspartato/genética
18.
Biomaterials ; 301: 122293, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639978

RESUMO

Inducing pyroptosis in cancer cells can result in a strong anti-tumor immune response. Our preliminary study indicates that pyroptosis can be temporarily strengthened by disrupting mitochondria, but ultimately diminished by defensive mitophagy. Here, this study reports a nano-system camouflaged with hybrid membranes consisting of homologous cell membrane and corresponding mitochondrial membrane, which is used to deliver a drug complex Ca@GOx consisting of calcium phosphate and glucose oxidase. By taking advantage of the homing effects of cell membrane and the orientated fusion mechanism of subcellular membrane, the nano-system is able to deliver Ca@GOx to mitochondria, induce mitochondrial Ca2+ overload and generate significant levels of ROS, thus leading to pyroptosis. However, it's found that this system exhibits limited anti-tumor effects in vivo due to the compensatory activation of mitophagy serving as negative feedback to pyroptosis. To address this issue, mitophagy-inhibiting chloroquine is loaded into nanoparticles to intensify pyroptosis. As a result, the combination significantly promotes tumor infiltration of CD8+T cells and improves anti-tumor effects. Together, this study establishes a rational combination of targeted mitochondria disruption and mitophagy blockage for effective pyroptosis-based therapy.


Assuntos
Biomimética , Nanopartículas , Mitofagia , Piroptose , Membrana Celular
19.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514695

RESUMO

The traditional lateral flow immunoassay (LFIA) detection method suffers from issues such as unstable detection results and low quantitative accuracy. In this study, we propose a novel multi-test line lateral flow immunoassay quantitative detection method using smartphone-based SAA immunoassay strips. Following the utilization of image processing techniques to extract and analyze the pigments on the immunoassay strips, quantitative analysis of the detection results was conducted. Experimental setups with controlled lighting conditions in a dark box were designed to capture samples using smartphones with different specifications for analysis. The algorithm's sensitivity and robustness were validated by introducing noise to the samples, and the detection performance on immunoassay strips using different algorithms was determined. The experimental results demonstrate that the proposed lateral flow immunoassay quantitative detection method based on image processing techniques achieves an accuracy rate of 94.23% on 260 samples, which is comparable to the traditional methods but with higher stability and lower algorithm complexity.


Assuntos
Algoritmos , Smartphone , Imunoensaio/métodos , Processamento de Imagem Assistida por Computador , Limite de Detecção
20.
Adv Sci (Weinh) ; 10(23): e2301434, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290058

RESUMO

Strategies that induce dysfunction in the endoplasmic reticulum (ER) hold great promise for anticancer therapy, but remain unsatisfactory due to the compensatory autophagy induction after ER disruption. Moreover, as autophagy can either promote or suppress cell survival, which direction of autophagy better suits ER-targeting therapy remains controversial. Here, a targeted nanosystem is constructed, which efficiently escorts anticancer therapeutics into the ER, triggering substantial ER stress and autophagy. Concurrently, an autophagy enhancer or inhibitor is combined into the same nanoparticle, and their impacts on ER-related activities are compared. In the orthotopic breast cancer mouse model, the autophagy enhancer increases the antimetastasis effect of ER-targeting therapy and suppresses over 90% of cancer metastasis, while the autophagy inhibitor has a bare effect. Mechanism studies reveal that further enhancing autophagy accelerates central protein snail family transcriptional repressor 1 (SNAI1) degradation, suppressing downstream epithelial-mesenchymal transition, while inhibiting autophagy does the opposite. With the same trend, ER-targeting therapy combined with an autophagy enhancer provokes stronger immune response and tumor inhibition than the autophagy inhibitor. Mechanism studies reveal that the autophagy enhancer elevates Ca2+ release from the ER and functions as a cascade amplifier of ER dysfunction, which accelerates Ca2+ release, resulting in immunogenic cell death (ICD) induction and eventually triggering immune responses. Together, ER-targeting therapy benefits from the autophagy-enhancing strategy more than the autophagy-inhibiting strategy for antitumor and antimetastasis treatment.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Retículo Endoplasmático , Camundongos , Animais , Retículo Endoplasmático/metabolismo , Morte Celular , Autofagia/fisiologia , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...